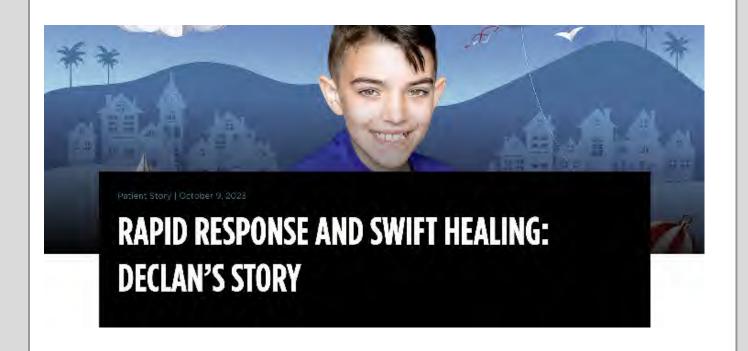
A Shocking Amount of Bleeding...

Trauma and Hemorrhagic Shock

By the end of this talk...

- Identify & treat hemorrhagic shock
- Increased understanding of:
 - Damage control resuscitation
 - Lethal triad and trauma induced coagulopathy
 - Use & advantages of TEG
 - 1:1:1 blood product administration
 - Crisis resource management



Our Why? Mission:

To restore, sustain and enhance the health and developmental potential of children through excellence in care, education, research and advocacy

LOCAL NEWS

Emotional reunion between 10year-old San Diego boy and Mercy Air flight crew who helped save his life

Trauma Stats

Trauma is the leading cause of mortality & morbidity

30 day mortality in children with traumatic hemorrhagic shock is 36-50% (v. 20-25% in adults)

An estimated 1000 – 2000 preventable deaths in children per year after injury occur in the US because of inadequate or delayed care

Etiology of Traumatic Arrest

- Penetrating versus blunt injury
 - ✓ Better outcomes in penetrating trauma
- Location of injury
- Hemorrhage is the leading cause of traumatic death

Injury patterns in traumatic cardiac arrest

Polytrauma

Exsanguination

Isolated traumatic brain injury

Thoracic trauma

Abdominal trauma

Other causes

Predictors of Survival

Mechanism

Location of injury

ROSC in field, length of cardiac arrest

Reversal of tension pneumothorax, cardiac tamponade

Urgent resuscitation with hemostasis

What is damage control resuscitation?

Go Navy Beat Army!

Damage Control Resuscitation

Damage Control Basics

01

Stop the bleeding

02

Treat shock

03

Treat coagulopathy

Blood Reviews

journal homepage: www.elsevier.com/locate/bire

REVIEW

Blood Reviews 23 (2009) 231-240

Resuscitation and transfusion principles for traumatic hemorrhagic shock Philip C. Spinella 4, John B. Holcomb b, T

Damage control resuscitation principles.

Rapid recognition of high risk for trauma-induced coagulopathy (massive transfusion prediction)

remissive hypotension

Rapid definitive/surgical control of bleeding Prevention/treatment of hypothermia, acidosis, and hypocalcemia Avoidance of hemodilution by minimizing use of crystalloids Early transfusion of red blood cells:plasma:platelets in a 1:1:1 unit ratio Use of thawed plasma and fresh whole blood when available Appropriate use of coagulation factor products (rFVIIa) and fibrinogen-

containing products (fibrinogen concentrates, cryoprecipitate)

Use of fresh RBCs (storage age of <14 days)

When available thromboelastography to direct blood product and the hemostatic adjunct (anti-fibrinolytics and coagulation factor) administration

Stop The Bleed

SAVE A LIFE

STOPTHEBLEED.ORG

Identification of Hemorrhagic Shock

Shock Severity

- **✓** Based on systolic blood pressure
- **✓** Compensated vs. uncompensated (hypotensive) shock
- **✓** Hypotension

Term neonates (0-28d)

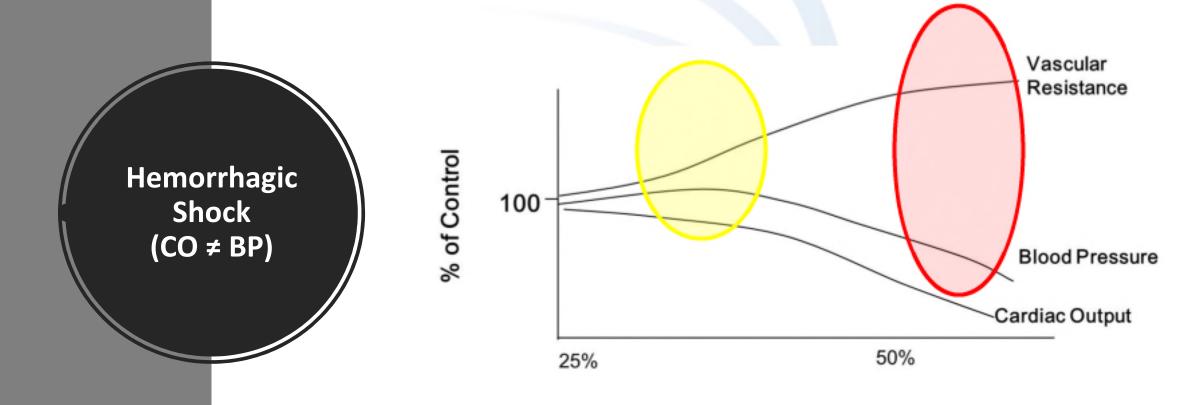
Infants (1-12 months)

Children (1-10y)

Children (> 10y)

SBP < 60 mmHg

SBP < 70 mmHg


 $SBP < 70 + (2 \times age) mmHg$

SBP < 90 mmHg

Unique to Children

- Cardiac output = stroke volume (SV) x HR
 - ✓ Younger children have limited ability to increase SV
 - ✓ Usually maintain adequate CO by becoming tachycardic
- Improved ability to maintain SVR & BP
- In kids... TACHYCARDIA is a sign of shock and HYPOTENSION is a late ominous sign

% Loss

Stages of Shock... End organ perfusion?

Organ system	↓Perfusion
CNS	
Respiration	
Gut	
Kidney	↓UOP, ↑Specific gravity
Skin	Delayed cap refill
CVS	↑HR

Organ system	↓Perfusion	↓ ↓Perfusion	
CNS		Restless, apathetic, anxious	
Respiration		†Ventilation	
Gut		↓Motility	
Kidney	↓UOP, ↑Specific gravity	Oliguria (<0.5 ml/kg/h)	
Skin	Delayed cap refill	Cool extremities	
CVS	↑HR	↑↑HR, ↓peripheral pulses	

Organ system	↓Perfusion	↓ ↓Perfusion	↓↓↓Perfusion
CNS		Restless, apathetic, anxious	Agitated/confused, stuporous, coma
Respiration		†Ventilation	††Ventilation
Gut		↓Motility	Ileus
Kidney	↓UOP, ↑Specific gravity	Oliguria (<0.5 ml/kg/h)	Oliguria / anuria
Skin	Delayed cap refill	Cool extremities	Mottled, cyanotic, cold extremities
CVS	†HR	↑↑HR, ↓peripheral pulses	↓BP, central pulses only

What is your blood volume in ml/kg?

Age Specific Blood Volume

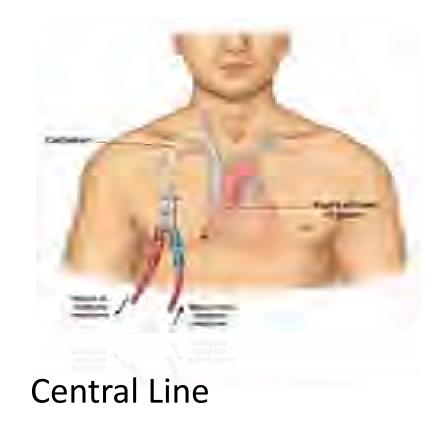
Newborn to 1 month	90mL/kg
1-12 months	85 mL/kg
1-14 years	80 mL/kg
>14 years	75 mL/kg

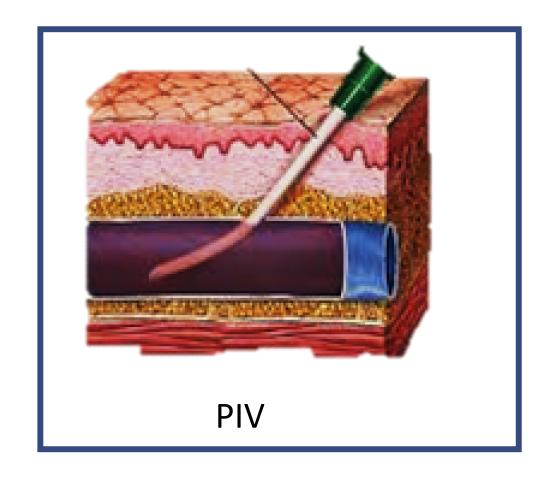
Treatment of Hemorrhagic Shock

RESUSCITATE

CHAMPION

ABCs of Shock


BLS, PALs, ATLS


Early recognition and urgent intervention

Constant reassessment

What type of shock?

Access: PIV vs IO vs Central Line?

Poiseuille's Law $R = 8nI/r^4$

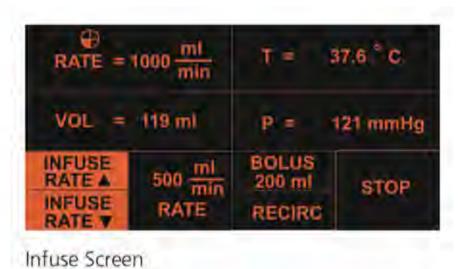
Access

- IO
- Large bore PIV
- Cordis

IV CATHETER SIZES AND FLOW RATES

How do you administer fluids?

How do you administer fluids?


- Do it Fast!
- Traditional IV pump
 - Max rate 999 ml/hr
 - Can ONLY deliver
 20ml/kg within 5 min to
 a child that weight less
 than

• 4.16 kg

Belmont Rapid Infuser

- 10 1000 ml/min
 - Set a rate
 - Set bolus infusion
- Automatic air removal
- Heated
- Reservoir for fluid mixtures

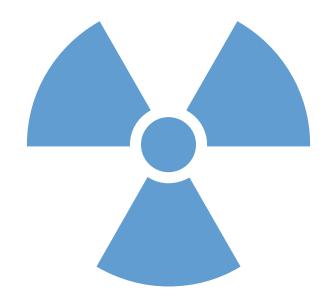
Jöurnal of Trauma and Acute Care Surgery

Pediatric traumatic hemorrhagic shock consensus conference recommendations

Robert T. Russell, MD, MPH, Joseph R. Esparaz, MD, MPH, Michael A. Beckwith, MD, Peter J. Abraham, MD, Melania M. Bembea, MD, PhD, MPH, Matthew A. Borgman, MD, Randall S. Burd, MD, PhD, Barbara A. Gaines, MD, Mubeen Jafri, MD, Cassandra D. Josephson, MD, Christine Leeper, MD, Julie C. Leonard, MD, MPH, Jennifer A. Muszynski, MD, MPH, Kathleen K. Nicol, MD, Daniel K. Nishijima, MD, MAS, Paul A. Stricker, MD, Adam M. Vogel, MD, Trisha E. Wong, MD, MS, and Philip C. Spinella, MD, Birmingham, Alabama

Pediatric Traumatic Hemorrhagic Shock Consensus Conference Recommendations

Traumatic Hemorrhagic Shock


- Recent retrospective and prospective observational studies indicate that transfusion strategies can reduce morbidity and mortality in children with traumatic hemorrhagic shock
 - ✓ Limiting crystalloid
 - ✓ Appropriate transfusion ratios
 - ✓ Use of whole blood & hemostatic adjunct therapies

Prioritize blood products over crystalloids

EMERGENCY RELEASE BLOOD

What is the lethal triad?

Lethal Triad

COAGULOPATHY

ACIDOSIS

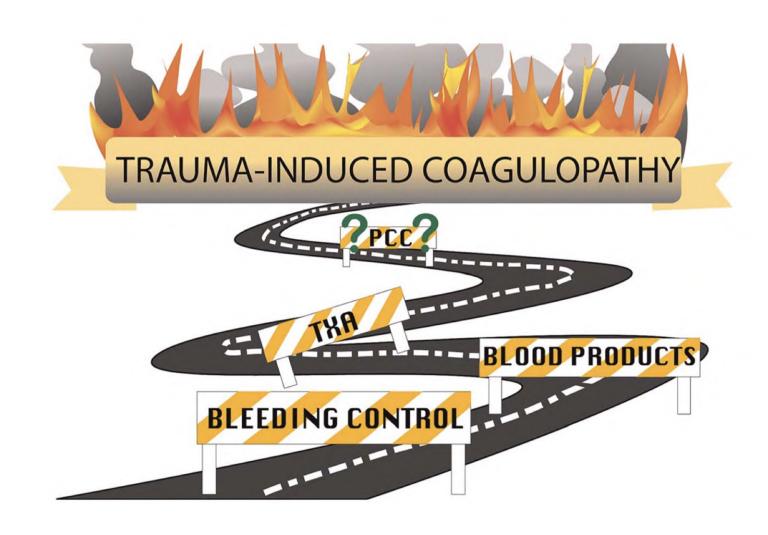
HYPOTHERMIA

Mechanisms of early trauma-induced coagulopathy: The clot thickens or not?

Geoffrey P. Dobson, PhD, Hayley L. Letson, MSc, Rajiv Sharma, MD, Forest R. Sheppard, MD, and Andrew P. Cap, MD, PhD, Queensland, Australia

Trauma Induced Coagulopathy

- ✓ Direct or anatomic bleeding from the site of injury
- ✓ Early coagulopathic bleeding


Prevention

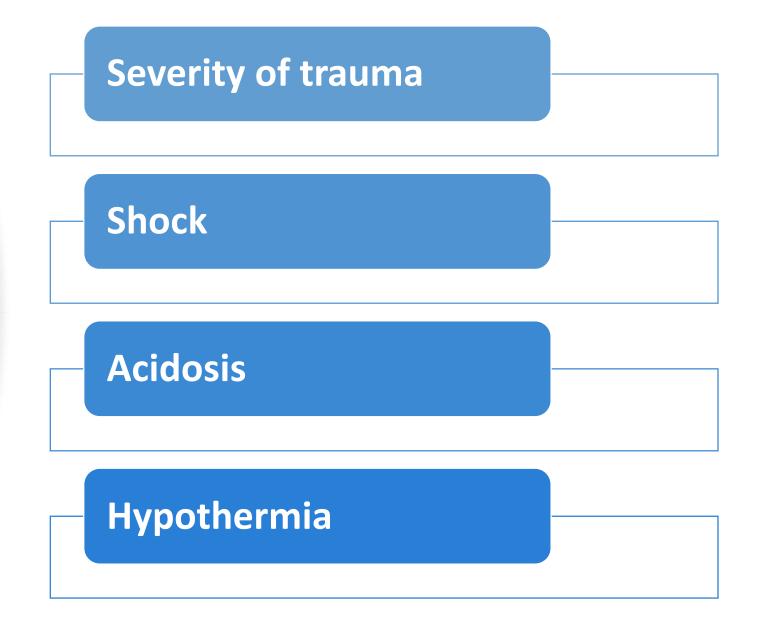
Early bleeding control

Normothermia

Blood products

TXA

Trauma Induced Coagulopathy


Dynamic

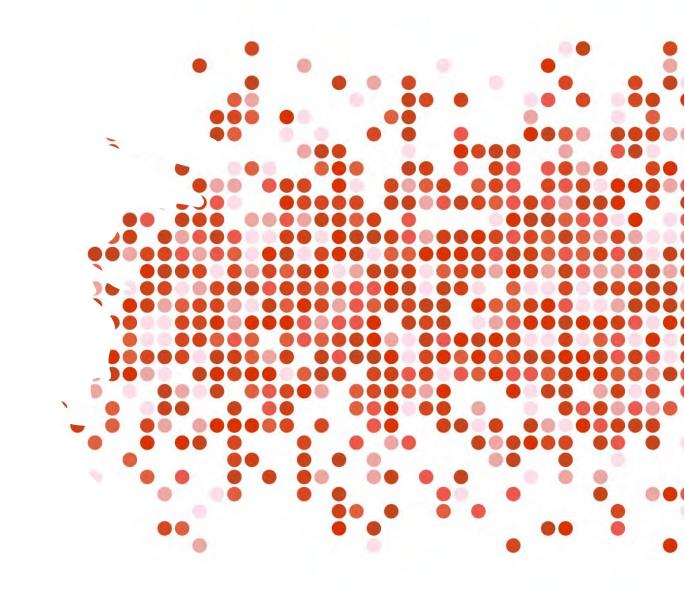
Early and late phase

Major drivers:

- Tissue hypoperfusion
- Endothelial injury
- Inflammation

Risk Factors for Trauma Induced Coagulopathy

Recognition of Trauma Induced Coagulopathy


Bleeding, Shock, Acidosis

Labs

- PT, PTT, INR
- Fibrinogen
- Hemoglobin, Hematocrit,
 Platelets
- TEG, ROTEM

Thromboelastography TEG 101

"TEG Talks"

When to Use TEG?

Severe trauma, activation of MTP

Blood given in trauma bay

To gain comfort with use and interpretation

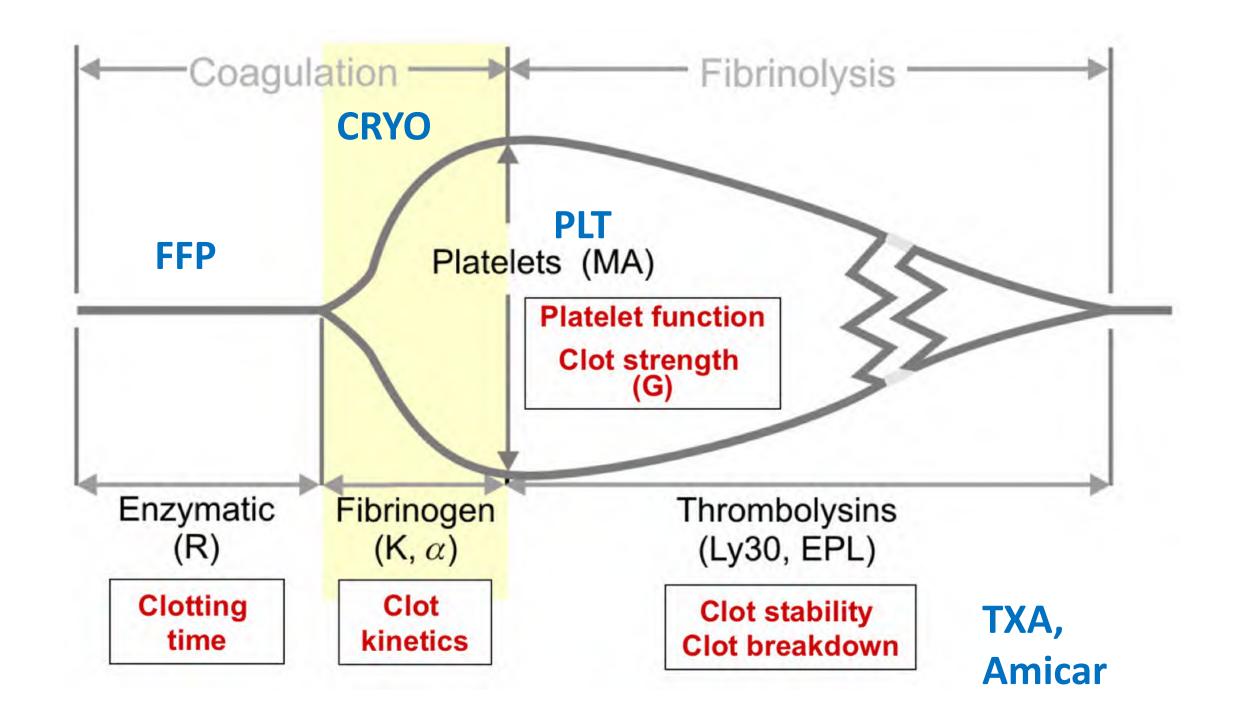
High grade solid organ injury

Severe TBI

Whole blood viscoelastic profiles

Within 10 minutes! Real time visualization of TEG curve and data, info on:

Clot initiation Clot kinetics Clot strength Fibrinolysis*


*Assessment of fibrinolysis requires more time (>30 minutes)

Numbers

- ✓ R time
- ✓ Angle
- ✓ MA (maximum amplitude)
- ✓ Fibrinolysis

Shape of the TEG curve

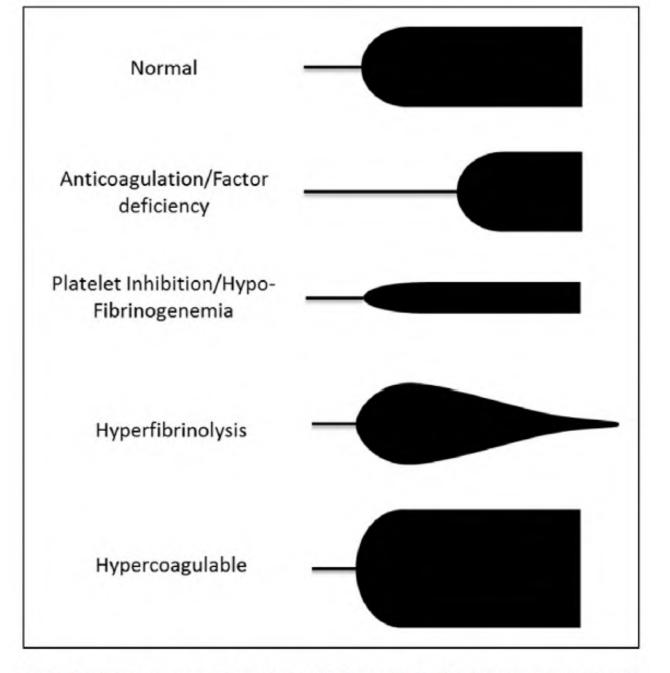


Fig. 2. Graphical representation of viscoelastic analysis. The general shapes of coagulation abnormalities are similar on both TEG and ROTEM.

Rapidly available

Viewed in real time

Prolonged R time = FFP

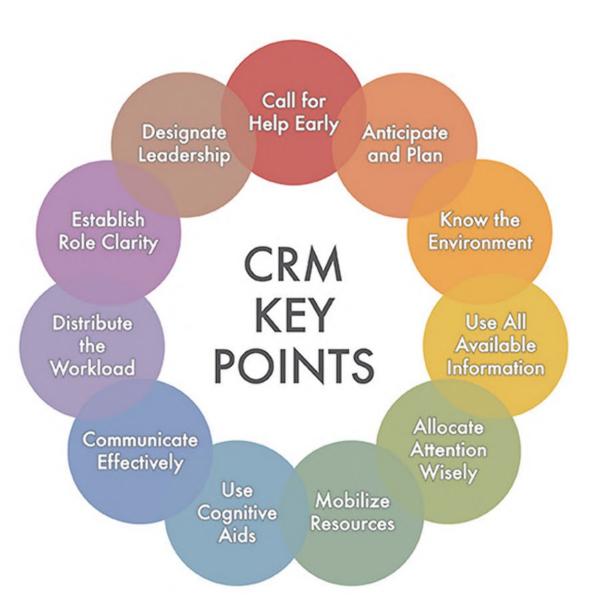
Low angle = cryoprecipitate

Low maximum amplitude (MA) = platelets

Maximum lysis (>3-7.5%) = tranexamic acid

MTP 1:1:1 Resuscitation

Massive Transfusion


- Prevent the anticipated complications that occur as a result of massive transfusion:
 - √ Thrombocytopenia
 - ✓ Depletion of coagulation factors
 - ✓ Electrolyte and acid/base disturbances (*calcium, potassium)
 - √ Hypothermia
 - ✓ Conserve valuable blood components while ensuring safe and rapid administration of blood

Leadership, Communication, Team Work

Crisis Resource Management Healthcare Simulation Team leaders are responsible for **ROLE CLARITY** assigning specific roles to other team members and monitoring their actions. Effective communication is critical to the success of COMMUNICATION any team. Be aware of barriers to asking PERSONNEL SUPPORT for help. Call for support early. teams should continually **RESOURCE UTILIZATION** survey their environment to identify all available resources. Leaders should maintain a GLOBAL ASSESSMENT global view during a crisis and avoid fixating on isolated details. It takes an interprofessional team to insure best practice and **TEAMWORK** patient safety.

Leadership & Management

- Multiple teams
- Roles
- Prioritize, resource allocation
- Listening to input and asking for input
- Recap, summary
- Crowd control, noise level

Communication

- Introductions
- Role clarity
- Closed loop communication
- Action linked phrases
 - ✓ There is no pulse, start compressions
 - ✓ That is a shockable rhythm, prepare to shock
 - ✓ Shock delivered, start compressions
- Shared mental model
 - ✓ What PALs algorithm are we in? say it out loud
- Debrief

Cooperation

- Roles
- Team within teams
- Choreography
- Adaptability

Situational Awareness

- Room set up
- Choreography
- Equipment knowledge
 - ✓ Location, use
- Systems based knowledge
 - ✓ ECMO activation
 - ✓ DART activation
 - ✓ Emergency release blood
 - ✓ Massive transfusion protocol activation

Decision Making

- Shared mental model
- Shared decision making
- Knowledge of ATLS, PALs algorithms
- Knowledge of systems
- Knowledge of critical care and trauma pathophysiology

Value of Simulation

 Multidisciplinary approach, reinforces a shared mental framework and the vital role of communication

Education and reinforcement of non-technical and technical skills

 Tool to investigate what is working and what is not working, improving systems and teams

Debriefing & Linking

Education
Quality & Safety
Wellness

Take Home Points


- Preparation, teamwork, communication
- Early recognition and intervention
- **ABCs**
- Stop the bleed
- Access
- Early blood products → Emergency Release Blood! MTP!
- Recognize and treat → Trauma Induced Coagulopathy: reverse shock, acidosis, coagulopathy, hypothermia
- 1:1:1 blood products (PRBC: FFP: Platelets)
- Constant reassessment
- Lessons learned, support the team, patient, & family

Questions

Our "Why" is awesome...

Go Padres!!!

